22 September 2022 Project No: LTC22215

Attention: Chloe McConochie Gould Developments Limited

RE:

LandTech Consulting Ltd

Email: info@landtech.nz Postal: PO Box 119, Christchurch 8013 Auckland Office: 09 930 9334 9B Collard Place, Henderson

Christchurch Office: 03 390 1371 11B Carlyle Street, Sydenham

1.0 Introduction & Background

SHALLOW SOIL TEST REPORT

LOT 109, 138 DUNNS CROSSING ROAD

www.landtech.nz

LandTech Consulting Ltd (LandTech) were engaged by Gould Developments Limited to carry out lot specific shallow soil testing for the subdivision at 138 Dunns Crossing Road. This shallow soil test report is for Lot 109 of the subdivision herein referred to as the site. The purpose of the shallow soil testing is to confirm subsurface conditions and provide geotechnical recommendations with regards to future residential foundations within the site.

2.0 Shallow Soil Testing

LandTech investigated the site on 16 September 2022, comprising two hand auger holes with corresponding Scala Penetrometer tests and two additional Scala Penetrometer tests. The test locations were measured from lot boundaries and/or surveyed centre pegs and are approximate only. The test locations are shown on the LandTech *Test Location Plan*, Drawing No. Lot 109/ TLP attached to this report.

The soil conditions encountered within the hand auger holes were logged by LandTech technical staff in accordance with New Zealand Geotechnical Society *Guideline for the Description of Soil and Rock for Engineering Purposes* (2005). The hand auger logs are attached to this report.

The Dynamic Cone (Scala) Penetrometer testing procedure was carried out in accordance with NZS 4402:1988, Test 6.5.2, *Dynamic Cone Penetrometer*. The Scala penetrometer test results are attached to this report.

The hand auger holes encountered topsoil/fill material from the ground surface to approximately 0.1m to 0.3m depths, underlain by inferred natural gravel. Groundwater was not encountered during testing. Scala Penetrometer testing at each of the four locations returned results between 3 and 30 blows per 100mm penetration at the test positions, encountering refusal at depths between 0.5m and 0.7m below present ground level.

The two hand auger holes were carried out at either end of the lot; therefore, ground conditions could vary away from the test positions. Additionally, the tests refused within placed topsoil and inferred underlying natural ground. This bears the potential for greater depths of unsuitable topsoil and fill than those encountered within our hand augers, which should be considered during earthworks and foundation excavations.

3.0 Foundation Recommendations

We have previously investigated the site at 138 Dunns Crossing Road as part of a proposed subdivision investigation. The corresponding report is titled *Geotechnical Investigation Report for Proposed Residential Subdivision, 138 Dunns Crossing Road, Rolleston,* project reference: LTC20416, Revision A, dated 17 September 2021 the report classified the land as equivalent TC1, indicating the proposed new foundations are likely to be constructed in accordance with the NZS 3604: 2011 (i.e. light timber framed one or two story construction), subject to lot specific testing at the Building Consent stage.

From the lot-specific investigation for the site we conclude the site has "Good Ground", and that dwelling foundations on this site can comprise NZS3604:2011 type foundations or codemark approved concrete slab foundations that are applicable for the site conditions (i.e. "good ground"). All foundations must be embedded to a minimum depth of 0.3m below ground level, into the underlying Natural Gravel or Engineered Fill. At these depths, either "Good Ground" or an Ultimate Bearing Capacity of 300kPa is available/inferred. If specific engineering design is being carried out a strength reduction factor of ϕ =0.5 should be used. This depth has been supplied based on ground level at the time of testing. All topsoil and unsuitable materials should be removed below foundations and floor slab areas.

The subgrade should be inspected by a suitably qualified structural or geotechnical engineer or suitably experienced building inspector to confirm founding conditions meet the requirements of NZS3604:2011 "Good Ground".

SHALLOW SOIL TESTING REPORT LANDTECH CONSULTING LIMITED 22 SEPTEMBER 2022

4.0 Limitations

This shallow soil testing report has been prepared for our client, Gould Developments Limited. This report shall not be extrapolated for other nearby sites or used for any other purposes without the express approval of LandTech and their client.

This report has been based on the results of tests at point locations; therefore, subsurface conditions could vary away from the assumed geotechnical model. Should exposed soil conditions vary from those described herein we request to be informed to determine the continued applicability of our recommendations. We have attempted to conduct a thorough investigation of soil types across the site, within the agreed scope of works. However, variations still may exist as soils can vary naturally and due to previous human activities, which LandTech have no control over and should not be held accountable for.

The geotechnical investigation was confined to geotechnical aspects of the site only and did not involve the assessment for environmental contaminants. In addition, our investigation and analyses have also not taken into account possible fault rupture that may cause deformations and displacements of the ground directly below the site. This type of assessment is outside of the scope of our geotechnical engagement.

If you have any queries regarding this report, please contact the undersigned at your convenience.

Yours faithfully, LandTech Consulting Limited

Prepared By:

Kristen Bullen – Engineering Geologist BSc (Geology)

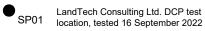
Authorised By:

ma won

Dwayne Wilson - Director CMEngNZ, CPEng, IntPE(NZ)

Attachments: Test Location Plan Test Results

SHALLOW SOIL TESTING REPORT LANDTECH CONSULTING LIMITED 22 SEPTEMBER 2022



⊕_{HA01}

LandTech Consulting Ltd. augerhole locations, drilled 16 September 2022

North

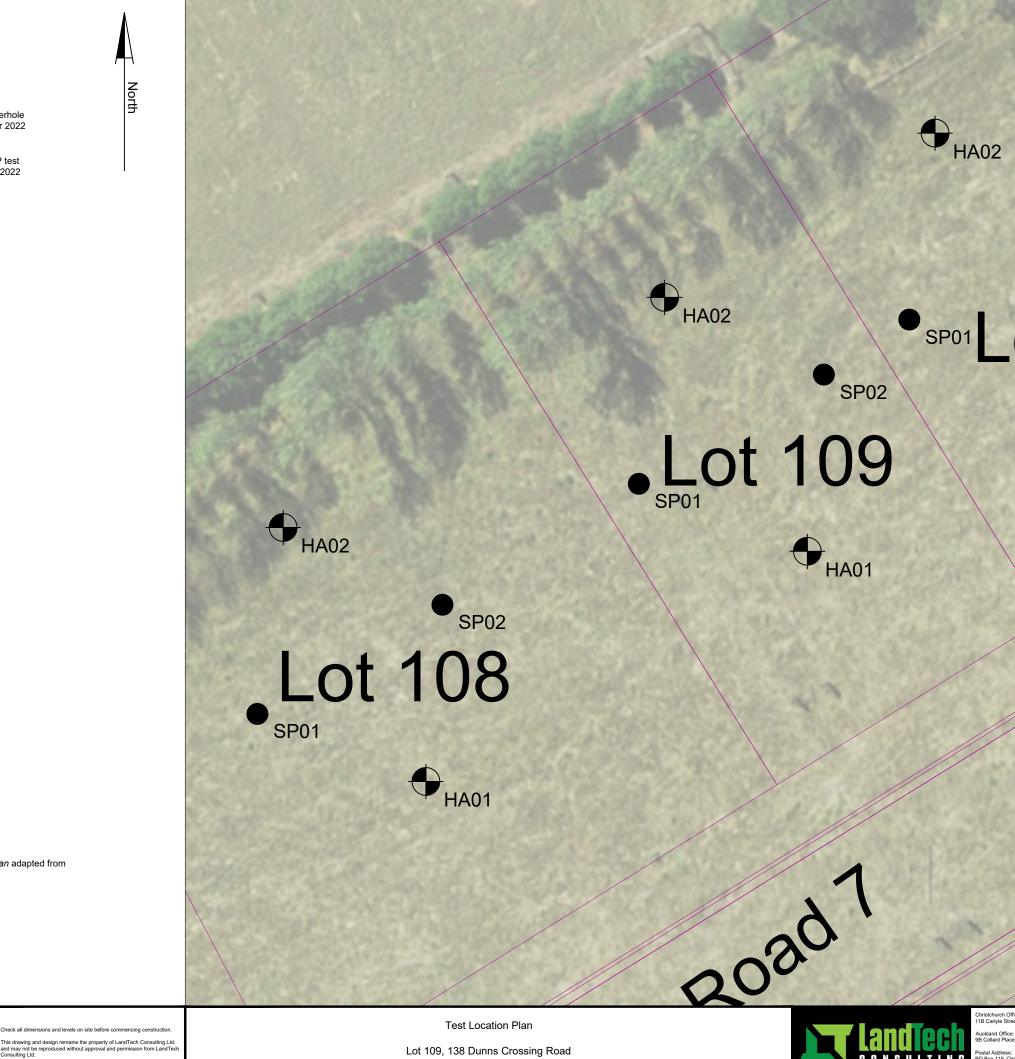
Proposed boundary

NOTES:

ATE

REV

5/09/2022 A


Locations of features approximate only

Original sheet size A3

Boundary information on this *Test Location Plan* adapted from LINZ website: <u>www.data.linz.govt.nz</u> (accessed 15 September 2022)

DESCRIPTION

Report Issue

Lot 109, 138 Dunns Crossing Road ROLLESTON

• SP01 LO

• SP01 Lot 110

SP02

Christchurch Office:		Drawn by:	Date:				
11B Carlyle Street, Sydenham, Christchurch 8023		KB	15 September 2022				
Auckland Office:	^{Scale:}	Checked by:		Revision:			
9B Collard Place, Henderson, Auckland 0610	1: 150 (A3)	DW		A			
Postal Address: PO Box 119, Christchurch 8013							
Website: www.landtech.nz Email: info@landtech.nz	Filename: LTC22215 - Master Plan Drawings.dwg						

			Client: Goulds Developments Limited Project: Lot Specifics Address: 138 & 5/144 Dunns Crossing, Rolleston									No.: Lot No.: 1 of	109 - HA01 1
Project Drill Ty Date St Date Fi	pe: arted		Coordinates: Mand Auger 0-22 Ground Conditions:	NZTM2000: I 42.50m (LVD Near Level, T Not Encounte)37) Fopsoil			04.80		Logge Shear Calibra Calibra	Vane N ation Fa ation D	actor: ate:	KI
ž	~	6			e.	~	Shoar	Strength		-situ Fiel		-	enetrometer
grapt	Ш́ Ч	lic Lo	Description		dwat al (m)	ш́ Ч	Peak	-	(KFd)	-			
Stratigraphy	Depth (m)	Graphic Log	Soil description in accordance with Guideline for the Field Classification and Description of Soil Engineering Purposes, NZ Geotechnical Society Inc, 2005	and Rock for	Groundwater Level (m)	Depth (m)	 Rem 			Depth (m) Blow Count		Scala Blow Count / 100mm	
"		Ŭ			0		50 ⁻	100 150	200	Dept	Blow	0 5	10 15 2
soil / ïll			Fine to coarse angular to subround gravelly SILT, dark brown, stiff, m	noist, non-						-0.1	4		
Topsoil Fill	-	XXXX	plastic [TOPSOIL/ FILL].			-						•	
			End of Augerhole: 0.1m							-0.2	3		
	-		[TOO DENSE TO AUGER]			-				-0.3	6		
	-					-							
										-0.4	26		
	-					-				-0.5	30		
	0.5 _					0.5 _							
	-					-							
	-					-							
	-					-							
	-					-							
	4.0					4.0							
	1.0 _					1.0 _							
	-					-							
	-					-							
	-					-							
	-					-							
	1.5 _					1.5 _							
	-					-							
	-					-							
	-					-							
	_					_							
	-					-							
	2.0 _					2.0 _							
	_					_							
	_					-							
	-					-							
	_					_							
	-					-							
	-					-							
	2.5 _					2.5 _							
	-					-							
	_					_							
	-					-							
	-					-							
	-					-							
	rou-1				In- situ testin	g inaccorda	nce with the fo	llowing standa	ards:				
nferred gi	avels				Scala Penet	rometer Te	ting: NZS 440	2:1988, Test	6.5.2, Dynam				
							ideline for Har	iu Held Shear					
			LandTech Consulting Ltd: 11B Carlyle Street, Sydenham Christchurch, 8023		Ph: 03 390	0 1371				Email: info Website: w	angtech ww.landte/	ch.nz	

Project No. Drill Type: Date Starte Date Finish Atyde:Bits to the function of	50 mm ed: 16-Se hed: 16-Se	1215 Coordinates: N Hand Auger Reduced Level: 4	NZTM2000: E								lo.: 1 of '	
	nic Log		42.50m (LVD3 Near Level, To Not Encounter	37) opsoil 8			14.88	s c	Calibra Calibra	/ane N tion Fa tion Da	o.: ictor: ate:	KI
	lic Lo			2						Testing		
		Description		lwat	(m)		Strength (k	Pa)	Dynam			enetrometer
=	Graphi	Soil description in accordance with Guideline for the Field Classification and Description of Soil a Engineering Purposes, NZ Geotechnical Society Inc, 2005	and Rock for	Groundwater Level (m)	Depth (m)	PeakRemo			Depth (m)	Blow Count	10	low Count /)0mm
Topsoil / Fill		SILT, minor fine sand and fine to coarse subround to rounded gravel, brown, stiff, moist, non-plastic [TOPSOIL/ FILL]. 0.1m: Trace fine subround gravel. 0.2m: No gravel. End of Augerhole: 0.3m	dark		-	50 1	00 150 2		-0.1 -0.2 -0.3	4 3 6	0 5	10 15 2
0.5	5	[TOO DENSE TO AUGER]			- 0.5				-0.4 -0.5 -0.6	18 20 20		
1.0	-) - -				- 1.0 -							
1.5	5											
2.0					_ 2.0 _ _							
2.5					- 2.5							
Inferred gravels	s						owing standards :1988, Test 6.5.		Cone Penetr	ometer		
 							d Held Shear Va					
		LandTech Consulting Ltd: 11B Carlyle Street, Sydenham Christchurch, 8023	Р	h: 03 390	1371			En We	nail: info@ ebsite: w	Mandtech. ww.landtec	nz :h.nz	

		andTe	Clien Proje	t: Goulds Developm	nents Lir	nited								
	CI	DNSULT		ess: 138 & 5/144 Dun	ns Cross	ing, Rolleston								
			Lot 109 -SP0 ²	1			Lot 109 - SP02	2						
			KP ons: Near Level, NZTM2000	Fill E 1549192.25 N 5170107.48	G	ested By: round Conditio pordinates:	KP ons: Near Level, Tops NZTM2000	oil & Gravel E 1549199. N 5170111.	59	Tested Ground Coordi	d Conditions:	G	rested By: Ground Conditions: Coordinates:	
	Test I	Date:	16-Sep-22		Te	est Date:	16-Sep-22	r		Test Da	ate:	Т	est Date:	
DEPTH (m)	DATA		SCALA PENE (Blows / 1 ۲ ۵ ۵ ۲ ۵ ۹		DATA	SCAL	A PENETROMETE (Blows / 100mm)	R	DEPTH (m)	DATA	SCALA PENETROMETER (Blows / 100mm) 두 작 약 후 약 후 수 약 후 은 두 은 약 후 약 약 수 약 후	рата	SCALA PENETROMETER (Blows / 100mm) 두 적 약 약 약 수 약 후 약 두 약 약 약 약 약 약 약	DEPTH (m)
0.2	- 6 - 4 - 4 - 24				3 4 3 25	2			 					_ 0.2 _ _ 0.2 _
0.6	20				• 15 21 30				0.6 					_ 0.6 _
_ 1.0 _ _ 1.2 _	-								_ 1.0 _ _ 1.2 _					 _ 1.0 _
- 1.4 -	-								_ _ 1.4 _ _ _ 1.6 _					
g2021 - 22/09/2022 08	-								_ _ 1.8					
- 0.2 2018	-								2.0 _ 2.2					2.0 2.2
end with CORF	-							- - - - - - - - - - - -	2.4					2.4 2.6
Generated with								-	_ 2.8					2.8